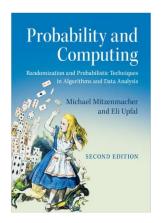
CS155/254: Probabilistic Methods in Computer Science

The Probabilistic Method



The Probabilistic Method

- Let X be a random variable defined on a discrete sample space $(\Omega, Pr(\cdot))$.
 - Assume $X: \Omega \to \{0,1\}$. If Pr(X=1) > 0, then there is $\omega \in \Omega$ such that $X(\omega) = 1$. **Example:** Ω is a collection of graphs, $X(\omega) = 1$ if graph ω is connected.
 - If E[X] = c, then there are $\omega_1, \omega_2 \in \Omega$ such that $X(\omega_1) \leq c$ and $X(\omega_2) \geq c$. **Example:** Assume that X is a gain in a sequence of games. There are sequences that yield < c and > c

Probability Argument Example: Edge Coloring

 K_k = the complete graph on k vertices (a clique of k nodes) - K_k has all the $\binom{n}{2}$ edges between its k vertices.

Can we color the edges of K_{1000} with two colors so that no K_{20} is edge monochromatic?

Theorem

If $\binom{n}{k} 2^{-\binom{k}{2}+1} < 1$, then it is possible to color the edges of K_n so that it has no monochromatic K_k subgraph.

Can we color the edges of K_{1000} with two colors so that no K_{20} is edge monochromatic?

Color the edges of K_{1000} randomly with two colors. The probability that at least one K_{20} is edge monochromatic is bounded by

$${1000 \choose 20} 2^{-{20 \choose 2}+1} \le \frac{1000^{20}}{20!} 2^{-(20(20-1)/2)+1}$$

$$\le \frac{2^{10 \cdot 20}}{20!} 2^{-10(20-1)+1} \le \frac{2^{10+1}}{20!} < 1.$$

The probability that no K_{20} that is edge monochromatic is > 0.

Therefore, the space of all $2^{\binom{1000}{2}}$ coloring of the edges in K_{1000} has at least one assignment such that no K_{20} is edge monochromatic

Proof

Define a sample space:

- $\Omega = \text{all } 2^{\binom{n}{2}}$ coloring with two colors of all the edges in K_n .
- The probability of each coloring in Ω is $2^{-\binom{n}{2}}$.

This model is equivalent to coloring each edge independently with equal probabilities to the two colors.

For $i=1,\ldots,\binom{n}{k}$, let A_i be the event that clique i is monochromatic. $\Pr(A_i)=2^{-\binom{k}{2}+1}$. The probability that at least one K_k is monochromatic

$$\leq \Pr\left(\bigcup_{i=1}^{\binom{n}{k}} A_i\right) \leq \sum_{i=1}^{\binom{n}{k}} \Pr(A_i) = \binom{n}{k} 2^{-\binom{k}{2}+1} < 1,$$

$$\Pr\left(\bigcap_{i=1}^{\binom{n}{k}} \overline{A_i}\right) = 1 - \Pr\left(\bigcup_{i=1}^{\binom{n}{k}} A_i\right) > 0.$$

For $i = 1, ..., \binom{n}{k}$, let A_i be the event that clique i is monochromatic. $\Pr(A_i) = 2^{-\binom{k}{2}+1}$.

$$\Pr\left(\bigcap_{i=1}^{\binom{n}{k}}\overline{A_i}\right) = 1 - \Pr\left(\bigcup_{i=1}^{\binom{n}{k}}A_i\right) > 0.$$

Thus, there is a coloring $\omega \in \Omega$ of the $\binom{n}{2}$ edges with the required property.

Theorem

If $\binom{n}{k} 2^{-\binom{k}{2}+1} < 1$, then it is possible to color the edges of K_n so that it has no monochromatic K_k subgraph.

The Expectation Argument: Large Cut-Set in a Graph.

Theorem

Given any graph G = (V, E) with n vertices and m edges, there is a partition of V into two disjoint sets A and B such that at least m/2 edges connect a vertex in A to a vertex in B.

Proof.

Construct sets A and B by randomly assign each vertex to one of the two sets.

The probability that a given edge connect A to B is 1/2, thus the expected number of such edges is a random partition is m/2. Thus, there exists such a partition.

How do we find such a partition?

Derandomization using Conditional Expectations

```
C(A, B) = number of edges connecting A to B. If A, B is a random partition E[C(A, B)] = \frac{m}{2}. Algorithm:
```

- 1 Let v_1, v_2, \ldots, v_n be an arbitrary enumeration of the vertices.
- 2 Let x_i be the set where v_i is placed $(x_i \in \{A, B\})$.
- 3 For i = 1 to n do:
 - 1 Place v; such that

$$E[C(A, B) \mid x_1, x_2, ..., x_i]$$

 $\geq E[C(A, B) \mid x_1, x_2, ..., x_{i-1}] \geq m/2.$

Conditional Expectation

Definition

$$E[Y \mid Z = z] = \sum_{y} y \Pr(Y = y \mid Z = z),$$

where the summation is over all y in the range of Y.

Lemma

For any random variables X and Y,

$$E[X] = \sum_{y} \Pr(Y = y)E[X \mid Y = y],$$

where the sum is over all values in the range of Y.

Lemma

For all i = 1, ..., n there is an assignment of v_i such that

$$E[C(A, B) \mid x_1, x_2, \dots, x_i]$$

 $\geq E[C(A, B) \mid x_1, x_2, \dots, x_{i-1}] \geq m/2.$

Proof.

By induction on *i*.

For
$$i = 1$$
, $E[E[C(A, B) | X_1]] = E[C(A, B)] = m/2$

For i > 1, if we place v_i randomly in one of the two sets,

$$E[C(A, B) \mid x_1, x_2, \dots, x_{i-1}]$$
=\frac{1}{2}E[C(A, B) \quad | x_1, x_2, \dots, x_i = A] + \frac{1}{2}E[C(A, B) \quad | x_1, x_2, \dots, x_i = B]
=\frac{m}{2}.

$$\max (E[C(A,B) \mid x_1, x_2, \dots, x_i = A], E[C(A,B) \mid x_1, x_2, \dots, x_i = B])$$

$$\geq E[C(A,B) \mid x_1, x_2, \dots, x_{i-1}]$$

$$\geq m/2$$

How do we compute

$$\max(E[C(A,B) \mid x_1, x_2, \dots, x_i = A], E[C(A,B) \mid x_1, x_2, \dots, x_i = B])$$

$$\geq E[C(A,B) \mid x_1, x_2, \dots, x_{i-1}] \geq m/2$$

We just need to consider edges between v_i and v_1, \ldots, v_{i-1} . Simple Algorithm:

- 1 Place v_1 arbitrarily.
- 2 For i = 2 to n do
 - 1 Place v_i in the set with smaller number of neighbors.

Sample and Modify

An *independent set* in a graph *G* is a set of vertices with no edges between them.

Finding the largest independent set in a graph is an NP-hard problem.

$\mathsf{Theorem}$

Let G = (V, E) be a graph on n vertices with dn/2 edges. Then G has an independent set with at least n/2d vertices.

Algorithm:

- 1 Delete each vertex of G (together with its incident edges) independently with probability 1 1/d.
- 2 For each remaining edge, remove it and one of its adjacent vertices.

X = number of vertices that survive the first step of the algorithm.

$$E[X] = \frac{n}{d}$$
.

Y = number of edges that survive the first step.

An edge survives if and only if its two adjacent vertices survive.

$$E[Y] = \frac{nd}{2} \left(\frac{1}{d}\right)^2 = \frac{n}{2d}.$$

The second step of the algorithm removes all the remaining edges, and at most Y vertices.

Size of output independent set:

$$E[X-Y] = \frac{n}{d} - \frac{n}{2d} = \frac{n}{2d}.$$

Sets with Distinct Sums

A set $S = \{x_1, \dots x_k\} \subset \{1, \dots, n\}$ has the distinct sums property if for any $S_1, S_2 \subset S$, $S_1 \neq S_2$

$$\sum_{x_i \in S_1} x_i \neq \sum_{x_j \in S_2} x_j.$$

Theorem

Let f(n) be the maximum size of a distinct sums set that is a subset of $\{1, \ldots, n\}$.

$$f(n) \le \log_2 n + \frac{1}{2} \log \log n + O(1).$$

Simple Argument

Assume that $S = \{x_1, \dots, x_k\} \subset \{1, \dots, n\}$ has the distinct sums property.

For
$$i = 1, ..., k$$
, let $Y_i \in \{0, 1\}$.

There are 2^n assignments for Y_1, \ldots, Y_k , and for each assignment $X = \sum_{i=1}^k x_i Y_i$ must give a different value.

There are no more than kn possible different values.

$$2^k < nk$$

$$k = \log_2 n + \log_2 k$$
.

$$k \leq \log_2 n + \log \log n$$

Adding the Variance

Assume that $S = \{x_1, \dots, x_k\} \subset \{1, \dots, n\}$ has the distinct sums property.

Define k random random variable $Pr(Y_i = 1) = Pr(Y_i = 0) = \frac{1}{2}$.

Let $X = \sum_{i=1}^{k} x_i Y_i$. Then

$$\mu = E[X] = \frac{1}{2} \sum_{i=1}^{k} x_i$$
, and $Var[X] = \frac{1}{4} \sum_{i=1}^{k} x_i^2 \le \frac{n^2 K}{4}$.

Applying Chebyschev's Inequality, for any $\lambda > 0$

$$Pr(|X - \mu| \ge \lambda \frac{n\sqrt{k}}{2}) \le \frac{1}{\lambda^2}$$

$$Pr(|X - \mu| \le \lambda \frac{n\sqrt{k}}{2}) \ge 1 - \frac{1}{\lambda^2}$$

Since S has the distinct sums property, for any x, Pr(X = x) is ether 2^{-k} or 0. Thus,

$$Pr(|X - \mu| \le \lambda \frac{n\sqrt{k}}{2}) \le 2^{-k} (\lambda n\sqrt{k} + 1),$$

$$1 - \frac{1}{\lambda^2} \le Pr(|X - \mu| \le \lambda \frac{n\sqrt{k}}{2}) \le 2^{-k} (\lambda n\sqrt{k} + 1),$$

$$n \ge \frac{2^k(1-\lambda^{-2})-1}{\lambda\sqrt{k}}$$

For
$$\lambda = \sqrt{3}$$
,

$$k \leq \log_2 n + \frac{1}{2} \log \log n + O(1).$$

The First and Second Moment Methods

Theorem

For an integer random variable $X \geq 0$,

- **1** $Pr(X > 0) = Pr(X \ge 1) \le E[X]$
- 2 $Pr(X = 0) \le Pr(|X E[X]| \ge E[X]) \le \frac{Var[X]}{(E[X])^2} \le \frac{E[X^2]}{(E[X])^2}$
- 3 $Pr(X \ge 1) \ge \frac{(E[X])^2}{E[X^2]}$

Proof: For $X \ge 0$ and integer:

- 1. $Pr(X \ge 1) \le \sum_{i>1} Pr(X \ge i) = E[X].$
- 2. Chebyshev bound.
- 3. Using Cauchy-Schwarz inequality:

$$\sum_{i=1}^{n} a_i b_i \le \sqrt{\sum_{i=1}^{n} a_i^2} \sqrt{\sum_{i=1}^{n} b_i^2}$$
$$E[X] = E[X \cdot 1_{X \ge 1}] \le \sqrt{E[X^2]} \sqrt{Pr(X \ge 1)}$$

Application: Number of Isolated Nodes

Let $G_{n,p} = (V, E)$ be a random graph generated as follows:

- The graph has *n* nodes.
- Each of the $\binom{n}{2}$ pairs of vertices are connected by an edge with probability p independently of any other edge in the graph.

A node is isolated if it is adjacent to no edges.

If p = 0 all vertices are isolated (have no edges). If p = 1 no vertex is isolated. What can we say for 0 ?

Application: Number of Isolated Nodes

Let $G_{n,p} = (V, E)$ be a random graph generated as follows:

- The graph has n nodes.
- Each of the $\binom{n}{2}$ pairs of vertices are connected by an edge with probability p independently of any other edge in the graph.

A node is isolated if it has no edges.

$\mathsf{Theorem}$

For any function $w(n) \to \infty$

- If $p = \frac{\log n w(n)}{n}$, then with high probability the graph has isolated nodes.
- If $p = \frac{\log n + w(n)}{n}$, then with high probability the graph has no isolated nodes.

High Probability = probability converging to 1 as $n \to \infty$

Proof

For i = 1, ..., n, let $X_i = 1$ if node i is isolated, otherwise $X_i = 0$. Let $X = \sum_{i=1}^{n} X_i$.

$$E[X] = n(1-p)^{n-1}$$

For
$$p = \frac{\log n + w(n)}{n}$$

$$E[X] = n(1-p)^{n-1} \le e^{\log n - (n-1)p} \le e^{-w(n)} \to 0$$

Thus, for
$$p = \frac{\log n + w(n)}{n}$$
,

$$Pr(X > 0) \leq E[X] \rightarrow 0$$

To use the second moment method we need to bound Var[X].

$$Var[X_i] \le E[X_i^2] = E[X_i] = (1-p)^{n-1}$$

$$Cov(X_i, X_j) = E[X_i X_j] - E[X_i]E[X_j] = (1 - p)^{2n-3} - (1 - p)^{2n-2}$$

$$Var[X] \leq \sum_{i=1}^{n} Var[X_i] + \sum_{i \neq j} Cov(X_i, X_i)$$

$$= n(1-p)^{n-1} + n(n-1)(1-p)^{2n-3} - n(n-1)(1-p)^{2n-2}$$

$$= n(1-p)^{n-1} + n(n-1)p(1-p)^{2n-3}$$

$$Var[X] = \sum_{i=1}^{n} Var[X_i] + \sum_{i \neq j} Cov(X_i, X_i)$$
$$= n(1-p)^{n-1} + n(n-1)p(1-p)^{2n-3}$$

$$Pr(X = 0) \leq Pr(|X - E[X]| \geq E[X]) \leq \frac{Var[X]}{(E[X])^2}$$

$$= \frac{n(1 - p)^{n-1} + n(n-1)p(1 - p)^{2n-3}}{n^2(1 - p)^{2n-2}}$$

$$= \left(1 - \frac{1}{n}\right) \frac{p}{1 - p} + \frac{1}{n(1 - p)^{n-1}}$$

For $p = \frac{\log n - w(n)}{n}$,

$$Pr(X = 0) \le \frac{Var[X]}{(E[X])^2}$$

= $\left(1 - \frac{1}{n}\right) \frac{p}{1 - p} + \frac{1}{n(1 - p)^{n - 1}} \to 0$

Since

$$n(1-p)^{n-1} \ge ne^{-p(n-1)}(1-\frac{p^2}{n}) \ge \frac{1}{2}e^{w(n)}$$

We use: for $|X| \leq 1$

$$e^{x}\left(1-\frac{x^{2}}{n}\right) \leq \left(1+\frac{x}{n}\right)^{n} \leq e^{x}$$